Toughening CO2-derived copolymer elastomers through ionomer networking

Poon K, Gregory G, Sulley G, Vidal F, Williams CK

Utilizing carbon dioxide (CO2) to make polycarbonates through the ring-opening copolymerization (ROCOP) of CO2 and epoxides valorizes and recycles CO2 and reduces pollution in polymer manufacturing. Recent developments in catalysis provide access to polycarbonates with well-defined structures and allow for copolymerization with biomass-derived monomers; however, the resulting material properties are underinvestigated. Here, new types of CO2-derived thermoplastic elastomers (TPEs) are described together with a generally applicable method to augment tensile mechanical strength and Young's modulus without requiring material re-design. These TPEs combine high glass transition temperature (Tg) amorphous blocks comprising CO2-derived poly(carbonates) (A-block), with low Tg poly(ε-decalactone), from castor oil, (B-block) in ABA structures. The poly(carbonate) blocks are selectively functionalized with metal-carboxylates where the metals are Na(I), Mg(II), Ca(II), Zn(II) and Al(III). The colorless polymers, featuring 50-fold higher Young's modulus and 21-times greater tensile strength, without compromise to elastic recovery, compared with the starting block polymers. They have wide operating temperatures (−20 to 200 °C), high creep-resistance and yet remain recyclable. In the future, these materials may substitute high-volume petrochemical elastomers and be utilized in high-growth fields like medicine, robotics, and electronics.

Keywords:

ionomers

,

ring-opening polymerization

,

thermoplastic elastomers

,

polyester

,

lactone

,

ring-opening copolymerization

,

carbon dioxide

,

polycarbonate

,

bio-derived

,

epoxide